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Reaction kinetics of diffusing particles injected into a reactive substrate

A. D. Sánchez,* S. Bouzat,† and H. S. Wio‡

Centro Atómico Bariloche (CNEA) and Instituto Balseiro (CNEA and UNC), 8400-San Carlos de Bariloche, Argentina
~Received 2 February 1999!

We analyze the kinetics of trapping (A1B→B) and annihilation (A1B→0) processes on a one-
dimensional substrate with homogeneous distribution of immobileB particles while theA particles are supplied
by a localized source. For the imperfect reaction case, we analyze both problems by means of a stochastic
model and compare the results with numerical simulations. In addition, we present the exact analytical results
of the stochastic model for the case of perfect trapping.@S1063-651X~99!08509-8#

PACS number~s!: 82.20.Wt, 02.50.2r
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I. INTRODUCTION

The dynamics of diffusion-controlled reactions has be
extensively studied in recent years due to its relevance in
most diverse areas of physics, chemistry, and biology@1#.
These studies include trapping, coalescence and annihila
of one and two species, corresponding to assorted proce
in heterogeneous reactions, catalysis, or membrane proc
in biology. It is of great interest to find theoretical mode
that correctly describe the different possible situations as
usual mean-field~MF! description fails when the system d
mensiond is low (d<2). Since the first contributions o
Smoluchowski@2#, many different models have been pr
posed@1,3#, trying to include aspects related with fluctu
tions and correlations, but with limited success.

Recently, and in order to obtain a better description
trapping (A1B→B) as well as annihilation (A1B→0) re-
actions, a stochastically based model was introduced@4–7#.
The equation for the evolution of the densities in such
model, corresponding to the continuous limit of the mas
equation describing the simulations, has been successf
describing several related situations, showing a very g
agreement with numerical simulations. Such a framew
also offers an adequate description for short, intermed
and long-time regimes. This model has been extended
different situations corresponding to quasidynamical tr
@8#, existence of sources@9#, behavior of the reaction fron
for initially separate reactants@10#, nearest-neighbor dis
tances@11#, and coupled reactions~or trapping with a time-
dependent number of traps! @12#.

An annihilation problem that has been studied throu
experiments, theory, and simulations@13–20#, corresponds
to the case in which the reactants are initially separate
space. In this situation, the theoretical analysis of the beh
ior of the reaction front is done in terms of one-dimensio
reaction-diffusion equations where the reaction terms
modeled according to chemical kinetics@13–18#. Recently,
renormalization-group techniques have also been used, s
ing from a master equation describing the process and tr
forming it into a second quantized version@21#. In Refs.
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@10,20# a different and more accessible framework has b
used, which is based on the stochastic model~SM! indicated
above. Within such a framework, scaling relations for t
form of the fronts have been obtained, with exponents t
agree with those obtained in recent simulations@19#. An ex-
perimental realization of this one-dimensional annihilati
problem is due to Koo and Kopelman@15#, corresponding to
a reaction performed in a capillary.

In this paper we consider two related problems, trapp
and annihilation in a one-dimensional system with a loc
ized constant source of diffusing particlesA, and the particles
B uniformly distributed and immobile. We have made a th
oretical analysis of each problem using the SM and also
simple MF description, and compared all the results w
numerical simulations. Associated experiments could be p
formed by implementing appropriate modifications of the e
perimental arrangement of Koo and Kopelman@15#. The ex-
perimental configuration would consist of a ‘‘T-like’’
capillary structure, with theA particles injected at a constan
rate through the vertical branch of the ‘‘T,’’ while the B’s
are located in the horizontal branch.

Two papers that deal with closely related problems
reactions in the presence of a localized source are thos
Refs. @9,22#. In Ref. @9# the trapping problem with periodi
cally distributed traps was analyzed by means of the SM
the results compared with simulations. In Ref.@22# the per-
fect annihilation problem was theoretically studied by mea
of a diffusion equation with a mobile boundary and simu
tions, and experimental results were presented as well.

The organization of the paper is as follows. We first stu
the imperfect trapping problem presenting analytical so
tions for the SM~approximate! and MF models, and also
discuss some scaling properties. Then we present the e
solutions of the SM for the cases of perfect trapping re
tions in infinite and finite substrates. All results are compa
with numerical simulations. Next, we numerically analy
the solutions of the SM and MF model for the case of i
perfect annihilation and compare them with simulations. T
last section is devoted to our conclusions.

II. TRAPPING REACTIONS

We analyze a system consisting of a one-dimensional s
strate with a uniform density of fixedB particles, and a lo-
calized source of diffusiveA particles. The particles underg
2677 © 1999 The American Physical Society
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a trapping processA1B→B. As the initial condition we
take a null density ofA particles.

The MF equation for the density ofA particlesnA(x,t) is

]nA~x,t !

]t
5D

]2nA~x,t !

]x2
2gnBnA~x,t !1npd~x!, ~1!

wherenB is the~constant! density of traps,D is the diffusiv-
ity of A particles,g is the reaction rate, andnp is the inten-
sity of the source~number of particles injected per unit time!.
The Laplace–Fourier transform of this equation, given by

nA~k,s!5
np

s~s1Dk21gnB!
, ~2!

can be inverted to obtain the exact solution

nA~x,t !5
np

2AgnBD
Fe2auxu2

1

2
e2axerfcS aADt2

x

2ADt
D

2
1

2
eaxerfcS aADt1

x

2ADt
D G , ~3!

where a5AgnB /D. By integration we obtainNA(t), the
number of surviving particles at a given time, given by

NA~ t !5E
2`

`

nA~x,t !dx5
np

gnB
@12exp~2gnBt !#. ~4!

We now consider the SM@5#. The basic equation of the
model is

]rA~x,t !

]t
5D

]2rA~x,t !

]x2
2g(

i
d~x2Ri !rA~x,t !1npd~x!,

~5!

where theRis are the random~uniformly distributed! posi-
tions of the traps andrA is theA density for a given realiza
tion of the process. The actual density is given by the
semble averagenA(x,t)5^rA(x,t)&.

The average was performed by a procedure similar to
one used in@5#, involving several approximations. The resu
for the Laplace-Fourier transform of the~approximated! den-
sity, is

nA~k,s!5
np

s1Dk2F 1

s
2

gnB

~s1Dk2!S s1gA s

4D D 1gnBsG .

~6!

Taking the inverse Fourier–Laplace transform of Eq.~6! is a
very difficult task; hence, we only calculate the number
surviving particles, which can be obtained from the inve
Laplace transform ofnA(k50,s), resulting in
-

e

f
e

NA~ t !5npt2
npgnB

n12n2
F S 1

n2
3

2
1

n1
3 D 1S 1

n2
2

2
1

n1
2 D

3A4t

p
1S 1

n2
2

1

n1
D t1

1

n1
3

en1
2 t

3erfc~2n1At !2
1

n2
3

en2
2 terfc~2n2At !G , ~7!

where n652g(/4AD)6Ag2/(16D)2nBg. We note that
Eq. ~7! only depends on two parameters:g/AD and nBg.
From Eq.~6! it is also possible to obtain the scaling prope
ties of the spatially dependent solution. Hence, we have

nA~x,t !

np /AD
5 f 1~gnB ,g/AD,t,x2/D !, ~8!

NA~ t !

np
5 f 2~gnB ,g/AD,t !. ~9!

In Fig. 1 we compare the results forNA(t) of the MF
approach and of the SM with numerical simulations. It c
be observed that the~approximated! solution found for the
SM shows good agreement with data from simulations
longer times than the~exact! solution of the MF model. For
t→` neither of the solutions describes the simulations c
rectly: while the solution of the SM diverges, MF resul
predict an incorrect final value. The discrepancy of exact M
results reveals an intrinsic feature of the model, which is
well-known incapability of taking into account segregatio
effects, which leads to an overestimation of the absorpt
On the other hand, the differences between the SM solu
and simulations are due to the approximations made in o
to obtain Eq.~6!.

At variance of the approximated solutions, the scaling
lations emerging from the SM turn out to be valid for a
times~at least to a very good approximation! as can be seen
in Fig. 2. In Fig. 2~a! we show results from simulations fo

FIG. 1. Temporal evolution of the number of survivingA par-
ticles in an imperfect trapping reaction. The solid line correspo
to the results of the SM, the dashed line corresponds to MF res
and the dots correspond to numerical simulations. The parame
used areD5g5nB50.1 andnp51. Numerical simulations have
been performed on a latice of 1000 sites.
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the spatial distribution ofA for three sets of parameters r
lated through the scaling property emerging from Eq.~8!.
The curves correspond to a time for which the system
reached its stationary regime and the scaling is still va
Similar results for earlier times are as good as those
shown. From Fig. 2~b! it can be seen that the scaling fo
NA(t) given by Eq.~9! is also valid. Hence from the SM w
have obtained not only an approximate solution valid
short and intermediate times, but also scaling relations v
for all times. It is worth mentioning that the scaling relatio
emerging from the exact solution of the MF model are o
valid for very short times~those where such a solution co
rectly describes simulations!.

In contrast with the case of imperfect reactions we c
solve the SM exactly when perfect reactions are conside
It is worth remarking that the MF model gives a null densi
as can be seen taking the limitg→` in Eq. ~4!. The solution
for the SM can be obtained noting that, in a given realizati
only two traps~those closest to the source on each side o!
are significant in the problem due to the fact that the den
is zero outside of the interval between them. Then we
write the expression for the density if the trap on the left is
x52x0 and the trap on the right is atx5x1, by solving the

FIG. 2. Results from simulations for distribution ofA particles
at t52000 ~a! and for the temporal evolution of the number
surviving A particles ~b!, for different sets of parameters
nB50.1, D51, g50.1, L5250, 5000 realizations ~crosses!,
nB51, D50.01,g50.01, L5200, 10 000 realizations~circles!,
nB51.4, D50.0051, g50.0071, L550 and 10 000 realization
~squares! with np51 for all sets. Note that if the scaling given b
Eqs. ~8! and ~9! is valid, all the simulations must be coincide
since they all havegnB50.01 andgD21/250.1.
s
.
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diffusion equation with absorbent conditions at2x0 andx1,
giving

rA~x0 ,x1 ,x,t !

np
5 (

j 52`

` HA t

pD
e2[x22 j (x01x1)] 2/4Dt

2
ux22 j ~x01x1!u

2D

3erfcS ux22 j ~x01x1!u

A4Dt
D

2A t

pD
e2[x22( j 21)x022 jx1] 2/4Dt

1
ux22~ j 21!x022 jx1u

2D

3erfcS ux22~ j 21!x022 jx1u

A4Dt
D J ,

~10!

for 2x0,x,x1 and zero otherwise. This equation is a su
of densities corresponding to an infinite number of imag
that must be alternately added and subtracted to obtain a
value of the actual density at both trap positions. The follo
ing step is averaging over the trap positionsx0 andx1. For
x.0 we have

nA~x,t !5E
0

`

dx0E
x

`

dx1rA~x0 ,x1 ,x,t !nB
2

3exp@2nB~x01x1!#. ~11!

For x,0 the solution can be obtained by reflection. Thex in
the lower limit of the integral overx1 takes into account tha
the density is zero beyondx1. After a tedious calculation, the
average is found to be

nA~x,t !

np
5

1

nBD
e2nBuxuerfcS uxu

A4Dt
D ~12!

2
1

nBD
e(nB/4)(DnBt22uxu)erfcS uxu1DnBt

A4Dt
D

1 (
j 52`,Þ0

` A t

pD
e2[4DnBt1(2 j 21)2uxu] uxu/(4Dt)

1sgn~ j !H 2
1

nBD
e2nBuxuerfcS u2 j 21uuxu

A4Dt
D

2F j ~ j 22!

nBD
1

nBt

2 j
1

~2 j 21!uxu
2D G

3e(DnBt22 j uxu)nB/~4j 2)erfcS DnBt1 j ~2 j 21!uxu

u j uA4Dt
D
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1
~ j 21!2

DnB
e[DnBt12( j 21)uxu]nB/[4( j 21)2]

3erfcS DnBt1~ j 21!~2 j 21!uxu

u j 21uA4Dt
D J .

The number of particles can be obtained by integrati
yielding

NA~ t !

np
5

4

nB
A t

pD
2

4

DnB
2

e(1/4)DnB
2 terfcS 1

2
nBADt D

1
2

DnB
2

eDnB
2 terfc~nBADt !12 (

j 52`

`

sgn~ j !

3H ~2 j 21!3

DnB
2

eDnB
2 t/(2 j 21)2erfcS nBADt

u2 j 21u D
22

~ j 21!3

DnB
2

eDnB
2 t/( j 21)2erfcS nBADt

2u j 21u D
26

j 3

DnB
2

eDnB
2 t/~4j 2!erfcS nBADt

2u j u D J . ~13!

The last equation depends on two parameters,D and nB ,
only through the combinationnB

2D, which remains as the
only relevant parameter.

Although general expressions~12! and ~13! are valid for
all times, a compact expression can be obtained in
asymptotic regime. Such expressions can be derived no
that a stationary density is asymptotically reached. Then,
a given realization, the density profile is composed of t
straight lines from the source to each trap, where it is z
~the reason for this is described in Ref.@9#!. By making a
balance between the diffusive current and the particles s
plied by the source the density at the origin

nA~0,t→`!5
np

D

x0x1

x01x1
. ~14!

Then, proceeding in a similar way as before, we perform
averaging, to obtain

nA~x,t→`!5
np

DnB
E4~nBuxu!, ~15!

NA~ t→`!5
np

2D

1

nB
2

, ~16!

whereEn(x) denotes the exponential integral function of o
der n @23#.

As the SM was exactly solved we expect a very go
agreement between theory and simulations, as in prev
cases where exact solutions were obtained@5,8,9,11#. In Fig.
3 we show results from simulations and theory for the d
sity profiles at two different times@Fig. 3~a!# and for the
number of particles@Fig. 3~b!#. The small discrepancy be
tween circles and the solid line in Fig. 3~b! is a consequence
of describing a discrete system by a continuous model an
,
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finite-size effects. Concerning simulations we note that
condition of no particles reaching the boundaries of the
tice is not sufficient to prevent finite-size effects. This
because the exponential distribution ofx0 andx1 used in Eq.
~11! is valid only for an infinite lattice. Simulations using no
large enough lattices produce lower densities because
izations where traps are very far from the source are
cluded. This effect is apparent in the figure~squares! since
the width of the density profile is smaller than the latti
length.

In a theory of finite lattices with periodic boundary co
ditions the averages of Eq.~10! must be taken using the
adequate joint probability distribution function forx0 andx1
~which for finite L are not independent variables! that is
given by

p~x0 ;x1!5
NB~NB21!

L2 S 12
x01x1

L D NB22

, ~17!

FIG. 3. Density profile~a! and number of survivingA particles
~b! for a perfect trapping reaction. In~a! density profiles correspond
to t510 000~top! and t5250 ~bottom!. The solid lines correspond
to SM results for stationary profile@Eq. ~15!# and for t5250 @10
terms in the sum of Eq.~12!# while dots are the result of numerica
simulations. In~b! the solid line corresponds to results for an in
nite lattice @20 terms in the sum of Eq.~13!# and the dots corre-
spond to numerical simulations. The final value corresponding
the finite-size calculation given by Eq.~21! is NA(t→`)5485.3
~circles! and 378.8~squares!, while theL→` value given by Eq.
~16! is NA(t→`)5500. The parameters used arenp51 and nB

5D50.1. Numerical simulations have been made on a lattice
1000 sites~circles! or 100 sites~squares!.
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whereL is the lattice length andNB is the number of traps
The average is given now by

nA~x,t !5nA* ~ uxu,t !1nA* ~L2uxu,t !, ~18!

where

nA* ~x,t !5E
x

L

dx1E
0

L2x1
dx0p~x0 ;x1!rA~x0 ,x1 ,x,t !.

~19!

Although an analytical expression fornA(x,t) may be ob-
tained, this would be rather complex, involving multip
sums of incomplete gamma functions. We only quote h
the stationary solutions for density and particle number, t
are given by

D

np
nA* ~x,t→`!5

1

3

1

nB1
1

L

2
1

2
x1

1

2
nBx2

1
1

6
nBS nB2

1

L D x3F lnS x

L D2
11

6 G
1 (

i 51

N22
N!

~N2 i 22!!

~21! i

i

x3

L2

3F 1

~ i 13!! S x

L D i

2
1

6i ! G , ~20!

NA~ t→`!5
np

2D

1

S nB1
1

L D S nB1
2

L D .

~21!

Finally, an interesting fact to mention about trapping
actions is that the solution of the SM for the problem
many A particle sources localized at arbitrary positions
simply the sum of the solutions for the problem of o
source at each position.

III. ANNIHILATION REACTIONS

Here we analyze a system consisting of a one-dimensi
substrate with a uniform initial densitynB0 of fixed B par-
ticles, and a localized source of diffusiveA particles. The
particles undergo an annihilation reactionA1B→0. Again,
we consider a null initial density ofA particles. We will
analyze only the case of imperfect reactions, since that
perfect reaction was analyzed by Larraldeet al. in @22#.

The equations of the MF model are

]nA~x,t !

]t
5D

]2nA~x,t !

]x2
2gnA~x,t !nB~x,t !1npd~x!, ~22a!

]nB~x,t !

]t
52gnA~x,t !nB~x,t !, ~22b!

with initial conditionsnA(x,0)50 andnB(x,0)5nB0. In di-
mensionless variables they become
e
at

-
f

al

a

]ñA~ x̃, t̃ !

] t̃
5D̃

]2ñA~ x̃, t̃ !

] x̃2
2g̃ñA~ x̃, t̃ !ñB~ x̃, t̃ !1d~ x̃!,

~23a!

]ñB~ x̃, t̃ !

] t̃
52g̃ñA~ x̃, t̃ !ñB~ x̃, t̃ !, ~23b!

with x̃5xnB0 , t̃ 5tnp , ñA5nA /nB0 , ñB5nB /nB0 , D̃

5DnB0
2 /np , g̃5gnB0 /np , and the initial conditions

ñA( x̃,0)50 andñB( x̃,0)51. Hence only two parameters re
main, namely,g̃ and D̃.

The SM can also be used to describe this problem
annihilation with a source, the general procedures being
those in@6#. Within the so-calledsuddenapproximation@6#,
we obtain the following~dimensionless! equations for the
densities, averaged over all possible annihilation process

]ñA~ x̃, t̃ !

] t̃
5D̃

]2ñA~ x̃, t̃ !

] x̃2
1d~ x̃!

2g̃E
0

t̃
dt8E

2`

`

dx8T~ x̃2x8, t̃ 2t8!

3ñB~x8,t8!ñA~x8,t8!, ~24a!

]ñB~ x̃, t̃ !

] t̃
52g̃E

0

t̃
dt8E

2`

`

dx8T~ x̃2x8, t̃ 2t8!

3ñA~x8,t8!ñB~x8,t8!, ~24b!

where T(x,t)5d(x)@h2exp(h2t)erfc(hAt)2h/Apt1d(t)#,

with h5g̃/A4D̃.
The expressions for the number of particles in dimensi

less and dimensional variables are related through

ÑA~ t̃ !5E
2`

`

ñA~ x̃, t̃ !dx̃5E
2`

`

nA~x,t !dxu t5 t̃ /np

5NA~ t !u t5 t̃ /np
. ~25!

The numerical solutions of Eqs.~23! and~24! are coinci-
dent and show excellent agreement with simulations. Th
both models correctly describe the dynamics of the proble
However, as the MF results have a lower computational c
we will only show those corresponding to this model.

In Fig. 4 we show the numerical solutions of the M
model for the density profiles together with results of n
merical simulations. We see that in spite of what happ
with the MF model in the trapping problem, here the agre
ment is excellent. As the MF treatment usually gives inc
rect results in similar problems~in dimensions below 2!, this
surprising fact can be understood as a consequence o
lack of segregation. In fact, in the case of annihilation wi
out sources with uniform initial densities, the MF model fa
in describing the temporal evolution due to the occurrence
the well-known segregation phenomenon, which leads to
formation of one species islands. However, in the pres
problem the islands are extremely rare~as can be seen from
simulations observing single realizations!, since it is too dif-
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ficult for the A particles to penetrate the region rich inB
particles without being annihilated.

Figure 5 shows the temporal evolution of the number
particles for two different sets of parameters. The excell
agreement between MF results and simulations is appare
can be seen that, for a given time,N(t) decreases asD̃ is
increased. This is because, with stronger diffusion, theA
particles can reach regions farther from the source and m
a larger number ofB particles. Another remarkable fact
that the results forN(t) depend very smoothly ong̃, since
curves corresponding to values ofg̃ differing in several or-
ders of magnitude turn out to be almost coincident~see in-
set!. These two facts show the strong diffusion-limited ch
acter of the process.

Simulations~for annihilation and trapping reactions! were
performed on a lattice ofL sites with periodic boundary con
ditions, where theB particles were fixed in random position
in each realization and theA particles underwent continuou
time random walks. When particles of different kinds me
the corresponding reaction takes place with a probability
pending on the reaction rateg ~with probability 1 for a per-
fect reaction!. TheA particles are injected at a single site o
by one, every 1/np units of time. A detailed description o

FIG. 4. Density profiles for imperfect annihilation reactions f
g5nB05np51 and D52. Solid lines correspond to MF result
and dots correspond to simulations (L5200). ~a! Density profiles
for t5375. Circles correspond toA particles and squares corre
spond toB particles.~b! Distribution of A particles corresponding
~from top to bottom! to t5500, 250, and 125.
f
t

. It

et

-

,
-

the algorithm used can be seen in@11#. All simulations
shown in the figures are averages over 100 realizations.

IV. CONCLUSIONS

We have analyzed trapping and annihilation reactions
one-dimensional substrate where theB particles are fixed and
the A particles are injected by a localized source. We ha
studied in each case the temporal evolution of the numbe
particles and the density profiles. The appearance of thA
particle profiles in both situations is a large growing pe
located around the position of the source. The theoret
results of the SM and the MF model were compared w
simulations in both situations.

For imperfect trapping reactions we found that the S
gives a much better description than the MF model, as wa
be expected. The approximate solutions of the SM corre
describe the simulations up to larger times and, more imp
tant, also predict useful scaling relations that are valid at
times.

For perfect trapping reactions we have obtained the ex
analytical results of thenA(x,t) andNA(t) within the SM~in
an infinite lattice! showing excellent agreement with simul
tions. In addition, by considering a finite lattice we ha
obtained the stationary behavior for the same quantities.
worth remarking that the finite-size effects are present e
when the tail of the peaked distributions induced by t
source does not reach the lattice boundaries.

For imperfect annihilation we have found that the S
gives a good agreement with simulation data. Remarkably
this case the MF model also provides a reasonable des
tion of the problem, unlike what happens in homogeneo
annihilation processes in low-dimensional systems. This
due to the absence of segregation effects. However, segr
tion would become important if a nonzero initial density ofA
particles were considered, causing the MF model to fail.

FIG. 5. Temporal evolution of the number of survivingA par-
ticles for an annihilation reaction. The solid line corresponds to M
results and the dots correspond to numerical simulations forD52
~squares! andD50.05~triangles!. The rest of the parameters are th
same as in Fig. 4. The inset shows simulations for the numbe
particles forg50.1 ~crosses! and g5` ~circles!; the rest of the
parameters are the same as those corresponding to squares
lattice is of 200 sites except for the triangles that is of 100 sites
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We have found that the system has only two effect
parameters,D̃5DnB0

2 /np and g̃5gnB0 /np ; however, the

results show a high degree of independence ong̃. Hence,D̃
remains as the only relevant parameter. An important
worth remarking is that, due to this independence, the res
for imperfect reactions become similar to those for a perf
reaction presented in@22#. An experimental realization like
the one suggested in the Introduction, would allow us to
the scaling relations by comparing results at different te
peratures~that induce changes in the system’s paramete!,
or varying theB reactant concentration or theA pumping
rate.

Another interesting point is that the dependence
nA(x,t) and NA(t) on np is found to be linear for the trap
ping case~it comes as a general factor!, while it is a non-
a

s.

S.

E

tt.
e

ct
lts
t

st
-

f

trivial ~nonlinear! one for the annihilation case.
Summarizing, we have presented an analysis of the ef

of localized sources ofA particles on a substrate ofB par-
ticles confirming the goodness of the stochastic model
describing such situations. Further extensions of these c
are under way.
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