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Reaction kinetics of diffusing particles injected into a reactive substrate
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We analyze the kinetics of trappingA{-B—B) and annihilation A+B—0) processes on a one-
dimensional substrate with homogeneous distribution of immdbparticles while theA particles are supplied
by a localized source. For the imperfect reaction case, we analyze both problems by means of a stochastic
model and compare the results with numerical simulations. In addition, we present the exact analytical results
of the stochastic model for the case of perfect trappi6d.063-651X99)08509-§

PACS numbegs): 82.20.Wt, 02.50-r

I. INTRODUCTION [10,2Q a different and more accessible framework has been
used, which is based on the stochastic m@8&f) indicated
The dynamics of diffusion-controlled reactions has beerabove. Within such a framework, scaling relations for the
extensively studied in recent years due to its relevance in thiorm of the fronts have been obtained, with exponents that
most diverse areas of physics, chemistry, and bioly =~ agree with those obtained in recent simulatiphg]. An ex-
These studies include trapping, coalescence and annihilatigerimental realization of this one-dimensional annihilation
of one and two species, corresponding to assorted processe®blem is due to Koo and Kopelmah5], corresponding to
in heterogeneous reactions, catalysis, or membrane procesgeseaction performed in a capillary.
in biology. It is of great interest to find theoretical models  In this paper we consider two related problems, trapping
that correctly describe the different possible situations as thand annihilation in a one-dimensional system with a local-
usual mean-fieldMF) description fails when the system di- ized constant source of diffusing particlesand the particles
mensiond is low (d<2). Since the first contributions of B uniformly distributed and immobile. We have made a the-
Smoluchowski[2], many different models have been pro- oretical analysis of each problem using the SM and also the
posed[1,3], trying to include aspects related with fluctua- Simple MF description, and compared all the results with
tions and correlations, but with limited success. numerical simulations. Associated experiments could be per-
Recently, and in order to obtain a better description offormed by implementing appropriate modifications of the ex-
trapping (A+B—B) as well as annihilationf+B—0) re-  perimental arrangement of Koo and Kopelnjas]. The ex-
actions, a stochastically based model was introdyided]. ~ perimental configuration would consist of aTike”
The equation for the evolution of the densities in such acapillary structure, with thé particles injected at a constant
model, corresponding to the continuous limit of the masterate through the vertical branch of ther';” while the B’s
equation describing the simulations, has been successful &re located in the horizontal branch.
describing several related situations, showing a very good Two papers that deal with closely related problems of
agreement with numerical simulations. Such a frameworkeactions in the presence of a localized source are those in
also offers an adequate description for short, intermediat®efs.[9,22]. In Ref.[9] the trapping problem with periodi-
and long-time regimes. This model has been extended tgally distributed traps was analyzed by means of the SM and
different situations corresponding to quasidynamical trapghe results compared with simulations. In Rgf2] the per-
[8], existence of source®], behavior of the reaction front fect annihilation problem was theoretically studied by means
for initially separate reactantgl0], nearest-neighbor dis- Of a diffusion equation with a mobile boundary and simula-
tanceg[11], and coupled reaction®r trapping with a time- tions, and experimental results were presented as well.
dependent number of trapl2]. The organization of the paper is as follows. We first study
An annihilation problem that has been studied througtthe imperfect trapping problem presenting analytical solu-
experiments, theory, and simulatiofis3—20, corresponds tions for the SM(approximatg and MF models, and also
to the case in which the reactants are initially separated idliscuss some scaling properties. Then we present the exact
space. In this situation, the theoretical analysis of the behawsolutions of the SM for the cases of perfect trapping reac-
ior of the reaction front is done in terms of one-dimensionaltions in infinite and finite substrates. All results are compared
reaction-diffusion equations where the reaction terms ar&ith numerical simulations. Next, we numerically analyze
modeled according to chemical kinetitk3—18. Recently, the solutions of the SM and MF model for the case of im-
renormalization-group techniques have also been used, staperfect annihilation and compare them with simulations. The
ing from a master equation describing the process and tran#st section is devoted to our conclusions.
forming it into a second quantized versipgal]. In Refs.

II. TRAPPING REACTIONS

*Electronic address: sanchez@cab.cnea.gov.ar We analyze a system consisting of a one-dimensional sub-
"Electronic address: bouzat@cab.cnea.gov.ar strate with a uniform density of fixeB particles, and a lo-
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a trapping proces®\+B—B. As the initial condition we 1000 F
take a null density oA particles. F
The MF equation for the density @f particlesn,(x,t) is

T
.

ana(x,t) . *np(x,t)

— 100 |
i P YNgNa(X,t) +Nnpd(x), (1) Z<
whereng is the(constant density of trapsD is the diffusiv-
ity of A particles,y is the reaction rate, ang, is the inten- ok
sity of the sourcénumber of particles injected per unit tijme 3
The Laplace—Fourier transform of this equation, given by Sl sl ]
10 100 1000 10000
t (arb. units)
n
na(k,s)= —2, (2) FIG. 1. Temporal evolution of the number of survividgpar-
s(s+Dk“+ yng) ticles in an imperfect trapping reaction. The solid line corresponds
to the results of the SM, the dashed line corresponds to MF results,

can be inverted to obtain the exact solution and the dots correspond to numerical simulations. The parameters

used areD=y=ng=0.1 andny,=1. Numerical simulations have
been performed on a latice of 1000 sites.

Na(x t)=L e‘a‘x‘—le‘axerfc a\/ﬁ—L

" 2\yngD 2 2\/Dt nyyn 1 1 1 1

’ R | Rt B e

1 (\/_ X) Vo=V \v2 v} vo vy
—5e¥erfcl ayDt+ ——— 3)

2 1
2Dt . ﬂ+<i_it+%eyit
T\ 1z v

where a=+/yng/D. By integration we obtairN,(t), the
number of surviving particles at a given time, given by

. ()

1
X erfo — v, \t) — —3e”2—‘erfo( —v_\t)
V_

o n
_ —_Prq_ _
NA(t)_f,wnA(x’t)dx_ ynB[l exp— el @) here v.=—y(/4JD)+y?/(16D) —ngy. We note that
Eq. (7) only depends on two parametergt\D and ngy.
From Eq.(6) it is also possible to obtain the scaling proper-

We now consider the SN5]. The basic equation of the . . .
NEl a ties of the spatially dependent solution. Hence, we have

model is
Na(X,t) 2
dpalx,t)  Ppalx.t) =f1(yng,¥/\D,t,x2/D), (8)
=D pe —yZ 8(x—R)palx,1) +N,8(x), n,/\D
® Na(t)
A
=fa(yng,¥/\D,b). ©)
where theR;s are the randonfuniformly distributed posi- P
tions of the traps ang, is theA density for a given realiza- In Fig. 1 we compare the results foé,(t) of the MF
tion of the process. The actual density is given by the engpproach and of the SM with numerical simulations. It can
semble averagea(x,t) =(pa(x,1)). be observed that th@pproximateyl solution found for the

The average was performed by a procedure similar to thgy shows good agreement with data from simulations for
one used irf5], involving several approximations. The result |onger times than théexac} solution of the MF model. For
for the Laplace-Fourier transform of titl@pproximategiden-  t_, neither of the solutions describes the simulations cor-

sity, is rectly: while the solution of the SM diverges, MF results
n

p -
s+DKk?| s

na(k,s)=

predict an incorrect final value. The discrepancy of exact MF
1 YN results reveals an intrinsic feature of the model, which is its
. well-known incapability of taking into account segregation
(s+DK?)| s+ [ 3], YNgS effects, which leads to an overestimation of the absorption.
4D On the other hand, the differences between the SM solution
(6)  and simulations are due to the approximations made in order
to obtain Eq.(6).
Taking the inverse Fourier—Laplace transform of H).is a At variance of the approximated solutions, the scaling re-
very difficult task; hence, we only calculate the number oflations emerging from the SM turn out to be valid for all
surviving particles, which can be obtained from the inverseimes(at least to a very good approximatjosms can be seen
Laplace transform oh,(k=0,s), resulting in in Fig. 2. In Fig. 2a) we show results from simulations for
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- 1 -~ rr T T T diffusion equation with absorbent conditions-ak, andxy,
. giving
¥ —pA(XO’Xl’X’t) = > 1A /Le—[x—Zj(xo+x1)]2/4Dt
5 np j=—o D
2]
£ _|X_21(X0+X1)|
- 2D
S
_Q % erf |X_2j(XO+X1)|>
T T T — 1 v T V4Dt
-60 -40 -20/ 0 20 40 60
-1/2 .
D™ z (arb. units) A /Le—[x—z(j—1)x0—2jxl]2/4Dt
100 [X=2(j = 1)Xo— 2jX4|
I b
= <erfd IX=2(j = 1)Xo— 2jx4]
8 V4Dt ’
Y
£ (10
& 10 7 . . L
. for —xo<x<x; and zero otherwise. This equation is a sum
of densities corresponding to an infinite number of images

that must be alternately added and subtracted to obtain a null
value of the actual density at both trap positions. The follow-
ing step is averaging over the trap positiogsandx,. For

FIG. 2. Results from simulations for distribution Afparticles x>0 we have
at t=2000 (a) and for the temporal evolution of the number of

10 100 1000
t (arb. units)

surviving A particles (b), for different sets of parameters: - w
ng=0.1,D=1, y=0.1, L=250, 5000 realizations (crossey nA(th):J' dxof dxlpA(xo,xl,x,t)nzB
ng=1,D=0.01,y=0.01, L=200, 10000 realizationgcircles, 0 X

ng=1.4, D=0.0051, y=0.0071, L=50 and 10000 realizations

B Y Xexd —ng(Xo+Xq)]. (11

(squarepwith n,=1 for all sets. Note that if the scaling given by

Egs. (8) and (9) is valid, all the simulations must be coincident
since they all haveyng=0.01 andyD "?=0.1. For x<<0 the solution can be obtained by reflection. Kia

o the lower limit of the integral ovex, takes into account that
the spatial distribution oA for three sets of parameters re- yhe gensity is zero beyond. After a tedious calculation, the
lated through the scaling property emerging from ).  ayerage is found to be
The curves correspond to a time for which the system has
reached its stationary regime and the scaling is still valid.

Similar results for earlier imes are as good as those jug?aXt 1 .
shown. From Fig. @) it can be seen that the scaling for n, ngD
Na(t) given by Eq.(9) is also valid. Hence from the SM we
have obtained not only an approximate solution valid for
short a_nd intermediate times_, blut also scaling r.elations_valid B ie(”B"‘)(D”B‘*Z‘X‘)erfC
for all times. It is worth mentioning that the scaling relations ngD
emerging from the exact solution of the MF model are only
valid for very short timegthose where such a solution cor- °° t O
rectly describes simulatiohs + X —=e~ [4Pnst+ I~ 114Dy
. . . - 40 D

In contrast with the case of imperfect reactions we can ) 7
solve the SM exactly when perfect reactions are considered. 1 12j — 1| |x|
It is worth remarking that the MF model gives a null density, +sgnj ){ - —e”BXerfc( —)
as can be seen taking the limit- in Eq. (4). The solution ngD V4Dt
for the SM can be obtained noting that, in a given realization,
only two traps(those closest to the source on each side)of it —
are significant in the problem due to the fact that the density
is zero outside of the interval between them. Then we can
write the expression for the density if the trap on the left is at w e(Dnat=2j[x)ne/4i?) g rfa
X= —Xg and the trap on the right is at=x,, by solving the

m) 12

|X|+ Dngt
Dt

i .
-2 ngt (2j-1x
ngD = 2] 2D

DnBt+j(2j—1)|x|)

|j| V4Dt
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L a2
LU ongte2G-1ixingai- 12

Dng
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The number of particles can be obtained by integration,
yielding

Na(t)y 4 [t 4 2 1
- . A(1/4)Dngt -
0 ns V7D DnzBe B'erf 2nB\/Dt

p

n , (arb. units)

-50 -25 0 25 50

2 (e ]
+—2eD“§terfc(nB\/ﬁ)+2 > sonj)
Dng j=—ee
500
i 1)\3
o P orzuei-12g ”B_‘/D_t>
Dn3 12j -1 375
i 1)\3
—2—(J D ePnat/(i- g nB.\/D_t
DnZ 2lj-1] 0
i3
_ej_eDngt/ij)erfc( nB‘/_a _ (13 125
Dn3 2(jl
The last equation depends on two parametBrand ng, 0 , i , I \ I , I , |
only through the combinatiom3D, which remains as the 0 2000 4000 6000 8000 10000
only relevant parameter. t (arb. units)

Although general expressior$2) and(13) are valid for

all times, a compact expression can be obtained in the FIG. 3. Density profile(@ and number of surviving\ particles
asymptotic regime. Such expressions can be derived notindp) for a perfect trapping reaction. l@) density profiles correspond
that a stationary density is asymptotically reached. Then, foto t=10 000(top) andt=250 (bottom). The solid lines correspond
a given realization, the density profile is composed of twoto SM results for stationary profilfEg. (15)] and fort=250[10
straight lines from the source to each trap, where it is zerderms in the sum of Eq12)] while dots are the result of numerical
(the reason for this is described in RE9]). By making a si.mulati.ons. In(b) the .solid line corresponds to results for an infi-
balance between the diffusive current and the particles supfite 1attice[20 terms in the sum of Eq13)] and the dots corre-

plied by the source the density at the origin spond to numerical simulations. The final value corresponding to
the finite-size calculation given by Eq21) is Na(t—~)=485.3
Ny XoXi (circles and 378.8(squares while theL—oo value given by Eg.
NA(Ot—o0)=— (14 (16) is Np(t—)=500. The parameters used arg=1 andng

+X,° . . : -
D Xotx; =D=0.1. Numerical simulations have been made on a lattice of

Then, proceeding in a similar way as before, we perform the-000 sites(circles or 100 sitessquares

averaging, to obtain finite-size effects. Concerning simulations we note that the
condition of no particles reaching the boundaries of the lat-
Ny o Hici finite-si ttocts. This |
NA(X,t—0)= —E,(ng|x|), (15  tice is not sufficient to prevent finite-size effects. This is
Dng because the exponential distributionxgfandx; used in Eq.
(12) is valid only for an infinite lattice. Simulations using not
n 1 6 large enough lattices produce lower densities because real-
Na(t—o0)= ﬁn_é' (16 izations where traps are very far from the source are ex-

cluded. This effect is apparent in the figuisguares since

whereE,(x) denotes the exponential integral function of or- the width of the density profile is smaller than the lattice
dern [23]. length. o

As the SM was exactly solved we expect a very good Ina theory of finite lattices with periodic boundgry con-
agreement between theory and simulations, as in previoudtions the averages of Eq10) must be taken using the
cases where exact solutions were obtaif&8,9,11. In Fig. ~ @dequate joint probability distribution function fag andx,
3 we show results from simulations and theory for the den{Which for finite L are not independent variabjethat is
sity profiles at two different time§Fig. 3@] and for the ~ given by
number of particle§Fig. 3b)]. The small discrepancy be-
tween circles and the solid line in Fig(t8 is a consequence P(Xo;X1) =
of describing a discrete system by a continuous model and of L?

Ng—2

Y

NB(NB_l) X0+Xl
=
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wherelL is the lattice length andlg is the number of traps. AT = 0TAKT) e e e 5
The average is given now by &},’ =D {2’ — yNa(X, t)ng(x,t)+ 8(x),
X
na(x,t)=nx(|x[,t)+nk(L—|x| 1), (18 (239
where 0?13& ~t) —— ——— o~
—=—=—yna(x,t)ng(x,t), (23b

at

L L—xq
n/’i(x,t)=f dxlf dXoP(Xg;X1) pa(Xg,X1,X,1). . - - - -

X 0 W|th X:XnBo, t:tnp, nA: nA/nBo, nB:nB/ngo, D

(19 =Dn3y/n,, y=vnge/n,, and the initial conditions

Although an analytical expression fory(x,t) may be ob-  Na(x,0)=0 andng(x,0)=1. Hence only two parameters re-
tained, this would be rather complex, involving multiple main, namely,y andD.
sums of incomplete gamma functions. We only quote here The SM can also be used to describe this problem of
the stationary solutions for density and particle number, thaannihilation with a source, the general procedures being like

are given by those in[6]. Within the so-callecsuddenapproximation 6],
we obtain the following(dimensionless equations for the
D ., 1 1 1 1 densities, averaged over all possible annihilation processes,
n—nA(x,tHOO)zg 1—§x+§n3x
p ~ o~~~ ~ o~
ng++— ana(x.1) - d%na(x,t -
o O _ D
ot X
gl nem el )]
_nB nB — X nf—|—— - T o - -
6 L L) 6 —'yftdt'f dx'T(x—x',t—t")
_ . 0 — o0
sz NI (—1) X3
TE NTi—2 0 2 XMg(xX' 1 )PAX ), (243
1 (x\' 1 anB(x t)
(i+—3)' E) —a} (20 fdt f dx' T(x—x't—t")
Ny XXt ) ng(x’,t"), 24b)
()= | AX ) g(X' 1) (24b)
b 1 2 )
ng+ || net where T(x,t) = 6(x)[ n?exp(t)erfc(n\t) — n/ Jmt+ &(t)],

(1  With n=7I\4D.
The expressions for the number of particles in dimension-
Finally, an interesting fact to mention about trapping re-l€ss and dimensional variables are related through
actions is that the solution of the SM for the problem of
manyA particle sources Ioca_lized at arbitrary positions is Na(T) = J'w ﬁA(;(,”f)dj(:f
simply the sum of the solutions for the problem of one -
source at each position.

©

nA(X:t)dX|t:~t/np

=Na(®)i=tn - (25
Il ANNIHILATION REACTIONS The numerical solutions of Eq§23) and(24) are coinci-
Here we analyze a system consisting of a one-dimension#lent and show excellent agreement with _simulations. Thus,
substrate with a uniform initial densityg, of fixed B par-  both models correctly describe the dynamics of the problem.
ticles, and a localized source of diffusive particles. The However, as the MF results have a lower computational cost

particles undergo an annihilation reactidn- B—0. Again, ~We Wwill only show those corresponding to this model.

we consider a null initial density oA particles. We will In Fig. 4 we show the numerical solutions of the MF
analyze only the case of imperfect reactions, since that of gnodel for the density profiles together with results of nu-
perfect reaction was analyzed by Larraeteal. in [22]. merical simulations. We see that in spite of what happens
The equations of the MF model are with the MF model in the trapping problem, here the agree-
ment is excellent. As the MF treatment usually gives incor-
MNa(X,1) 92na(x,t) rect results in similar problem dimensions below 12 this

— yna(X,Hng(x,t) +npd(x), (223 surprising fact can be understood as a consequence of the
lack of segregation. In fact, in the case of annihilation with-
out sources with uniform initial densities, the MF model fails

3”B(Xat)_ in describing the temporal evolution due to the occurrence of

—__ynA(X!t)nB(X!t)v (22b) i ’

ot the well-known segregation phenomenon, which leads to the
formation of one species islands. However, in the present
with initial conditionsna(x,0)=0 andng(X,0)=ngg. In di-  problem the islands are extremely rdes can be seen from
mensionless variables they become simulations observing single realizatignsince it is too dif-

at - (9X2
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8 - v T T T T T T I 500 F7 T T T T T T T T T =

400 |

0 100 200 300 400

n 4, N (arb. units)

ZZ< t (arb. units)
200 .
100 .
T T T T T T T v
-100 -50 b0 ) 100 0 . . Lo
Z (arb. units) 0 100 200 _ 300 400 500
Q= T T T T ’ T ' = t

FIG. 5. Temporal evolution of the number of survividgpar-
ticles for an annihilation reaction. The solid line corresponds to MF
results and the dots correspond to numerical simulation®fel
(squaresandD =0.05(triangles. The rest of the parameters are the
same as in Fig. 4. The inset shows simulations for the number of
particles fory=0.1 (crossep and y=« (circles; the rest of the
parameters are the same as those corresponding to squares. The
lattice is of 200 sites except for the triangles that is of 100 sites.

[=2]

n 4 (arb. units)
w

the algorithm used can be seen [ibl]. All simulations
shown in the figures are averages over 100 realizations.

Z (arb. units) IV. CONCLUSIONS

) i ) o ) We have analyzed trapping and annihilation reactions in a
FIG. 4. Density profiles for_lmperfect annihilation reactions for one-dimensional substrate where Biparticles are fixed and

Y=nNgo=Np=1 andD=2. Solid lines correspond to MF results ., o harticles are injected by a localized source. We have
and dots correspond to simulationis<200). (&) Density profiles studied in each case the temporal evolution of the number of
for t=375. Circles correspond té particles and squares corre- particles and the density profiles. The appearance ofthe
spond toB patrticles.(b) Distribution of A particles corresponding particle profiles in both situations. is a large growing peak
(from top to botton to t=500, 250, and 125. located around the position of the source. The theoretical
results of the SM and the MF model were compared with
simulations in both situations.

For imperfect trapping reactions we found that the SM
ives a much better description than the MF model, as was to

expected. The approximate solutions of the SM correctly

ficult for the A particles to penetrate the region rich B
particles without being annihilated.

Figure 5 shows the temporal evolution of the number of
particles for two different sets of parameters. The excellen

agreement between MF results and simulations is apparent. ! ) _ : .
describe the simulations up to larger times and, more impor-

can be seen that, for a given tim(t) decreases ab s tant, also predict useful scaling relations that are valid at all

increased. This is because, with stronger diffusion, Ahe times

particles can reach regiops farther from the source and Meet eor perfect trapping reactions we have obtained the exact
a larger number oB particles. Another remarkaple fact is analytical results of the(x,t) andNA(t) within the SM(in

that the results foN(t) depend very smoothly ofy, since  an infinite lattice showing excellent agreement with simula-
curves corresponding to values pfdiffering in several or- tions. In addition, by considering a finite lattice we have
ders of magnitude turn out to be almost coincidesge in-  obtained the stationary behavior for the same quantities. It is
sed. These two facts show the strong diffusion-limited char-worth remarking that the finite-size effects are present even

acter of the process. when the tail of the peaked distributions induced by the
Simulations(for annihilation and trapping reactionwere  source does not reach the lattice boundaries.
performed on a lattice df sites with periodic boundary con- For imperfect annihilation we have found that the SM

ditions, where thé3 particles were fixed in random positions gives a good agreement with simulation data. Remarkably, in
in each realization and th& particles underwent continuous this case the MF model also provides a reasonable descrip-
time random walks. When particles of different kinds meet,tion of the problem, unlike what happens in homogeneous
the corresponding reaction takes place with a probability deannihilation processes in low-dimensional systems. This is
pending on the reaction rate (with probability 1 for a per- due to the absence of segregation effects. However, segrega-
fect reaction. The A particles are injected at a single site onetion would become important if a nonzero initial density/of

by one, every 11, units of time. A detailed description of particles were considered, causing the MF model to fail.
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We have found that the system has only two effectivetrivial (nonlineay one for the annihilation case.
parametersD = Dnéolnp and y= yngo/N,; however, the Summarizing, we have presented an analysis of the effect

results show a high degree of independenceyohlence,D qf Iocalizeq Sources oA particles on a substratg &f par-
remains as the only relevant parameter. An important facrﬂcles'cpnﬂrmmg t.he goodness of the sto'chastlc model for
worth remarking is that, due to this independence, the result(gescnbmg such situations. Further extensions of these cases

for imperfect reactions become similar to those for a perfec[";‘re under way.

reaction presented if22]. An experimental realization like

the one suggested in the Introduction, would allow us to test

the scaling relations by comparing results at different tem-

peraturegthat induce changes in the system’s paramgters The authors want to thank V. Grfeld for a revision of

or varying theB reactant concentration or th® pumping the manuscript. Financial support from CONICERroject

rate. No. PIP-4953/95 and ANPCyT (Project No. 03-00000-
Another interesting point is that the dependence 0f00988, Argentina, is acknowledged. A.D.S. thanks the Fun-

na(x,t) andNx(t) onny is found to be linear for the trap- dacian Antorchas(Project No. A-13579/1-49for partial fi-

ping case(it comes as a general facipwhile it is a non-  nancial support.
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